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Abstract

Traditionally, camera-based tracking approaches have

treated rolling shutter and radial distortion as imaging ar-

tifacts that have to be overcome and corrected for in order

to apply standard camera models and scene reconstruction

methods. In this paper, we introduce a novel multi-camera

tracking approach that for the first time jointly leverages the

information introduced by rolling shutter and radial distor-

tion as a feature to achieve superior performance with re-

spect to high-frequency camera pose estimation. In partic-

ular, our system is capable of attaining high tracking rates

that were previously unachievable. Our approach explic-

itly leverages rolling shutter capture and radial distortion

to process individual rows, rather than entire image frames,

for accurate camera motion estimation. We estimate a per-

row 6 DoF pose of a rolling shutter camera by tracking mul-

tiple points on a radially distorted row whose rays span a

curved surface in 3D space. Although tracking systems for

rolling shutter cameras exist, we are the first to leverage ra-

dial distortion to measure a per-row pose – enabling us to

use less than half the number of cameras required by the

previous state of the art. We validate our system on both

synthetic and real imagery.

1. Introduction

The recent resurgence of Augmented Reality and Vir-

tual Reality (AR/VR) has provided challenging computer

vision problems of drastically higher requirements. For ex-

ample, recent state-of-the-art low-latency rendering tech-

niques [38, 24] assume that very high-frequency (>30 kHz)

tracking is available. However, commercial AR/VR sys-

tems like Google’s Daydream and Cardboard products and

Samsung VR, provide only rotational tracking, which lim-

its the immersive experience. The Oculus Rift and the HTC

Vive provide full 6-DoF (i.e. rotation and translation) track-

ing at ∼1 kHz frequencies. This full 6-DoF tracking comes

at a cost by requiring external lighthouses or IR cameras.

Figure 1: Due to radial distortion, rows of rolling shut-

ter images correspond to rays which span a curve in space.

Rolling shutter further provides a dense sampling of the

scene in time. This combination of high frequency and

curved sampling of the scene provides us more information

than traditional pinhole cameras. The highlighted region re-

flects per-row image region corresponding to the curve.

Microsoft’s HoloLens provides inside-out tracking without

requiring any external apparatus, but still incurs tracking er-

rors; see Sec. 4.3 for a more detailed analysis. It is well un-

derstood that high tracking rates are critical for immersive

experiences in AR/VR systems [31]. We present a full 6-

DoF tracking system using multiple cameras that can track

at extremely high frequencies up to 86.4kHz using com-

modity rolling shutter cameras.

Many commercial AR/VR systems rely on camera-based

tracking, but for cost reasons use standard cameras with

frames rates of a few tens of frames per second: e.g., the

Oculus Rift uses a 60 Hz external IR camera. In order

to achieve the higher frame rates required for tracking,

they rely on gyroscope data to improve the tracking frame

rate. However, positional tracking still remains difficult to

achieve, as IMUs drift [23]. Even using high frame-rate

global shutter cameras is not the solution, as the high frame

rates required lead to a decrease in the maximum possi-
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ble exposure time (equal to the inverse of the kHz frame

rate), making capturing sufficient light impractical, espe-

cially indoors [17], where AR/VR systems are most fre-

quently used. Also, most of these systems are head-worn

and require small-form-factor cameras, further limiting the

amount of light captured even.

We present a method for drastically improving the 6-

DoF tracking frequency in AR/VR devices while maintain-

ing comparable tracking accuracy w.r.t the current state of

the art [5] and currently available commercial systems such

as the Microsoft HoloLens. Our camera-based approach

uses standard low-cost commodity cameras and leverages

two unlikely camera ‘features’: rolling shutter and radial

distortion, both of which are usually considered to be nui-

sances in computer vision applications (Fig. 1). Bapat et

al. [5] demonstrated a proof-of-concept inside-out tracking

system using a cluster of 10 rolling shutter cameras that op-

erated at frequencies as high as 80kHz. We extend their

system and overcome the limitations of the large number

of required cameras as well as the need for stereo rectifica-

tion and radial undistortion. We achieve comparable track-

ing stability while (only requiring four cameras instead of

ten) making our system significantly more practical for use

in a headset. As a result, our system is simpler and more

flexible in terms of camera placement in the multi-camera

rig. Our novel insight is that radial distortion in the cam-

era lens induces constraints on the tracking system, which

in turn reduces the number of cameras required. We forgo

compensating the image for radial undistortion and directly

use the radially distorted rolling shutter image as captured

by the camera yielding more efficient computation, again of

significant importance for high-frequency tracking.

2. Related Work

The ubiquitous presence of rolling shutter (RS) cameras

in almost every cell-phone and low-cost camera has driven

much research to formulate its imaging model [15, 1, 2, 7].

In rolling shutter capture, each row (or column) is captured

at a slightly different time. Researchers have long strived to

remove rolling shutter and the artifacts resulting from cam-

era motion and the different exposure start times of the var-

ious rows of the camera have generally been regarded as

nuisances of the imaging process [13, 16, 30].

There have also been many efforts in the past decade to

incorporate rolling shutter capture models into traditional

algorithms in computer vision. Traditional geometric prob-

lems were explored while accounting for RS effects. For

example, Albl et al. [3] studied the RS PnP problem and

formulated RS P6P to estimate a moving camera’s pose

from six 2D-to-3D correspondences. Saurer et al. [33] de-

veloped a minimal absolute pose estimation solver based

on Gröbner basis functions. Magerand et al. [26] used

constrained global optimization to estimate uniform motion

of a known object captured using a RS camera. Similar

to [1, 2], they treated the RS camera as a highly sensitive

motion sensor given the template of the known object in

the scene and 2D-3D point correspondences. Dai et al. [9]

studied epipolar constraints for RS cameras and showed

that epipolar constraints do not define a line for RS cam-

eras but rather define epipolar curves. RS in multi-view

stereo was addressed by Saurer et al. [32], in which the au-

thors adapted the plane sweeping stereo algorithm for RS

and showed that the combination of RS artifacts and lens

distortion leads to biased 3D reconstruction if global shut-

ter is naı̈vely assumed. RS calibration was also examined

in [28, 15], where the goal was to measure the line de-

lay, i.e., the time delay between consecutive rows from im-

agery. Structure from Motion (SfM) traditionally assumes

global shutter and was thus shown to be unreliable when

used with images with large RS distortion [25, 19]. To re-

solve this, Hedborg et al. [18] proposed a RS aware Bun-

dle Adjustment (BA) method to account for the RS effect.

This effort improved the SfM pipeline, which had previ-

ously not worked well for RS images with significant mo-

tion [25]. Later, Saurer et al. [34] developed a full-fledged

SfM pipeline in which they assumed constant intra-frame

rotational and translational velocity similar to [3] during

BA and enforced temporal smoothness across frames us-

ing GPS readings. Recently, Albl et al. [4] showed that RS

cameras exhibit more degenerate configurations in SfM as

compared to the traditional pinhole global shutter model.

In such cases, BA prefers a trivial case where the scene is

estimated to be planar.

Kim et al. [21] introduced a monocular Simultane-

ous Localization and Mapping (SLAM) system specifi-

cally for RS cameras by adapting LSD–SLAM [12]. They

parametrized the intra-frame motion via a k-control point

B-spline. In contrast to our method, they assumed no ra-

dial distortion and estimate single pose for the entire frame.

More recently, they incorporated radial distortion in [22] by

using generalized epipolar curves instead of epipolar lines.

We introduce a tracking system (without mapping) which

essentially turns the rolling shutter camera into a compu-

tational sensor. We explicitly estimate intra-frame motion

while leveraging the radial distortion as a feature, and hence

methods like [21, 20, 29] which parametrize the intra-frame

motion using splines can benefit from our method.

3. Our Approach

In many computer vision applications, rolling shutter ar-

tifacts and radial distortion are considered negative aspects

of the capture process that must be corrected for, after image

formation. However, just as Bapat et al. [5] previously con-

verted rolling shutter “distortion” into an enabling feature

for high frequency tracking, we argue that radial distortion

can serve to greatly reduce a tracking system’s complexity.
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(a) (b) (c) (d) (e)

Figure 2: Under radial distortion, an input row sample represents a curve in the undistorted image space. (a) Radially

distorted image with one row highlighted by a dashed green line; (b) the same row in undistorted image space forms a curve.

By approximating this curve with (for example) three linear line segments as shown in (c-e), we obtain multiple virtual

cameras that each provide an independent linear constraint. In this sense, a single radially distorted line-image approximates

the multiple pinhole cameras used in [5]. For purposes of visualization, the distortion in (a) and (b) has been exaggerated; in

practice, we use a larger number of local linear approximations that better fit the undistorted curve.

It is in fact a feature, not an artifact.

We extend the high frequency 6-DoF tracking method

introduced by Bapat et al. [5] that used a cluster of RS

cameras arranged in stereo-pairs. In their system, each row

of the RS camera is treated as a line-camera capturing the

scene at high frequency. They process each row to measure

pixel disparities for their stereo camera to obtain depth of a

single point per camera. They also measure the pixel shift

of this point across time to obtain a constraint on the cluster

motion. Such a formulation provides a single constraint per

stereo-pair in a system of linear equations, requiring at least

12 cameras. In their simulation experiments, they use 10

stereo-pairs that are exactly in-plane. They also enforce that

the left-right rows expose at the same time. This is hard to

achieve in reality at kHz capture rates, particularly as their

5 GoPro stereo-pairs are not genlocked. This leads to stag-

gering of row exposures in time, which allows them to track

points with different y coordinates reducing the number of

cameras from 6 to 5 stereo-pairs. We use the spirit of this

earlier work to exploit the different rows of a RS camera as

independent high-frequency line cameras. Given this high-

frequency sampling, we propose a novel system that lever-

ages the naturally occurring radial distortion of the lens as

a feature for motion estimation to obtain a complementary

set of constraints, without the need of row-level in-step cap-

ture. Our tracking also benefits from a wider field of view

where radial distortion is more pronounced. Such cameras

are commonly used in tracking research, e.g., using a 130o

FoV camera is recommended for LSD-SLAM [11].

Ideal pinhole rolling shutter cameras only allow for a sin-

gle linear constraint per row-image. Our key insight is that

the process of undistorting a radially distorted row yields a

curve in the image space that can be approximated by mul-

tiple line segments, as shown in Fig. 2. Linear shifts can

thus be computed for each segment independently, afford-

ing us a linear constraint per segment, substantially reduc-

ing the number of cameras by 60%: from 10 cameras in

Bapat et al. [5] to 4 cameras in our system. In tetherless

AR/VR devices, reducing system complexity is critical, and

our approach substantially lowers the video bandwidth and

headset weight. Our proposed extension has the following

advantages over the system of Bapat et al. [5] while main-

taining its benefits of kHz tracking frequencies: 1. ) Instead

of 10 cameras, we show high-frequency tracking can be per-

formed using just 4 cameras. They are arranged so that ev-

ery camera has overlap with at least one other camera. 2. )

Our proposed approach does not need guarantees of phys-

ically in-plane stereo camera sensors for depth estimation,

as we propagate a depthmap for each camera across time.

Rather, we benefit from the rotation between cameras, as

each view provides additional scene coverage. 3. ) We ex-

ploit the lens’ radial distortion and use it to track multiple

points per row; see Sec. 3.2 for a detailed description.

3.1. Preliminaries

We first introduce the notation used in this paper while

explaining the tracking constraints of [5]. The time step ∆t

is defined from t1 to t2, where t2 > t1, and magnitude of

t2−t1 may vary. Bold capital letters define a matrix, e.g. M.

We define a relative transformation from space w to space

c, as cTw, which transforms points in space w to space c,

and a transform within a space w to be Tw.

The tracking method of [5] uses a cluster of cameras to

track the head-pose starting from the identity pose. There

are N cameras in the cluster, and the relative pose of camera

n ∈ N in the cluster space is denoted by nTcl, which can

be estimated by performing an extrinsic calibration.

The 6 DoF head-pose tracking is performed by measur-

ing small pixel shifts between the projection of a 3D world

point Xw = [xw yw zw 1]T in camera n at time instants t1
and t2, and transforming the shifts into the 3D space using

the depth of the point. These operations can be expressed
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for a camera n as follows:

X(n, t1) =
nTcl

clTw(t1)Xw

X(n, t2) =
nTcl

clTw(t2)Xw

(1)

where X(n, t1) = [x1 y1 z1 1]T and X(n, t2) =
[x2 y2 z2 1]T correspond to the same 3D world point Xw,

and are expressed relative to camera n at time t1 and t2
respectively. The transformation clTw transforms the 3D

point Xw from world space to the cluster space.

The 3D points X(n, t1) and X(n, t2) are related to

the corresponding pixels x(t1) and x(t2), x(t1) =
[px(t1) py(t1) 1]T , via the intrinsic matrix Kn. Depths

z(t1), z(t2) as defined by the following relations:

X(n, t1) = z(t1) K
−1

n x(t1)

X(n, t2) = z(t2) K
−1

n x(t2)
(2)

Tracking at high frequencies allows them to assume

small relative motion at each time step. We denote the

small motion approximation for the combined transform
clTw(t2)

clT−1

w (t1) by δM cl. The cluster’s approximate

small motion δM cl can be expressed in matrix form as

δMcl =




1 θz −θy −tx
−θz 1 θx −ty
θy −θx 1 −tz
0 0 0 1


 (3)

Using the small motion assumption, Eq.(1) can be simpli-

fied to

X(n, t2) =
nTcl δ Mcl

clTn X(n, t1) (4)

The depth z(t1) is estimated using the rows captured at time

t1 from the left and right cameras in the stereo-pair by mea-

suring pixel disparity. To estimate motion, temporal stereo

is used to measure the shift in pixels px(t2)− px(t1) across

the time step ∆t.

Using Eqn.(2), authors of [5] substitute image points for

3D points because the measurements are in terms of pixels.

Subsequently, a linear system is formulated by rearranging

Eq.(4) to the form C A Y = C B, where C is a diagonal

matrix of weighting factors estimated according to the con-

fidence in the measured shifts and Y = [θx θy θz tx ty tz]
T

represents the unknown 6-DoF motion vector of the camera.

Matrix A captures the cluster configuration and the tracked

3D points, while vector B captures the shift measurements.

However, the proof-of-concept high frequency tracking

method from Bapat et al. [5] assumes ideal conditions re-

garding row-level in-step exposure and exactly in-plane

stereo-pairs. Also they assume a perfect lens, i.e. they treat

radial distortion as an artifact and “correct” for it during pre-

processing in their experiments. Due to this, they are forced

to perform rectification and undistortion of the images to

make the input images more amenable to their model. This

pre-processing scheme however blends neighboring rows

captured at different times during the radial undistortion and

rectification steps and reduces image size. In contrast, our

proposed method leverages the full breadth of the original

image information to obtain tracking with fewer cameras.

3.2. Radial Distortion

Significant radial distortion is observed in wide angle

cameras and activity cameras such as GoPros. Such wide-

angular cameras are preferred for more stable tracking. Ra-

dial distortion transforms image rows to curves, and hence

rays corresponding to each row span a curved surface in

3D space, rather than a plane as assumed in the pinhole

model (Fig. 1). We model radial distortion in our system

and explicitly leverage the curved mapping introduced by it

to measure points at different rows in the undistorted im-

age space. We use the first two parameters, k1 and k2,

of Brown’s radial distortion model [8]. These parameters

transform an undistorted normalized pixel (x̃u, ỹu) into a

distorted normalized pixel (x̃d, ỹd) as

x̃d = x̃u

(
1 + k1r

2 + k2r
4
)

ỹd = ỹu
(
1 + k1r

2 + k2r
4
)

r2 = x̃2

u + ỹ2d.

(5)

When such a distorted row is captured by a rolling shutter

camera, the mapping from the 3D world point to the image

is dependent on the time at which a row is exposed, as well

as the distortion transformation.

In the rest of the paper, we omit the intrinsic camera pa-

rameters for brevity and assume normalized coordinates for

the image points. We leverage radial distortion to relax two

restrictions: 1) radial distortion bends the row into a curve

in the image plane, which means that shifts measured at

different x̃d positions at the same row ỹd have different ỹu
locations. This has a similar effect as the time staggering

observed in real cameras [5]. 2) We track multiple points

per row, as opposed to a single point, providing more con-

straints, enabling our method to track using fewer cameras.

Rolling shutter provides row-wise capture, and our

method measures how the current row shifts across time in

the horizontal direction. In a given row, we can express the

3D X-coordinate in terms of x̃u pixel positions at two time

instants t1 and t2 using the pixel shift st as follows:

x(t2) = x̃u(t2)z(t2) ≈ (x̃u(t1)+st)z(t1) = x(t1)+stz(t1).
(6)

3.2.1 Linear independent constraints

We now show the linear independence of the constraints ob-

tained for different points on the row whose rays span a 3D

44827



curve. Consider Eqn.(4), with nTcl as identity for simplic-

ity (corresponding to the anchor camera in the cluster). The

horizontal shift st corresponds to the first row of this vector

equation. Combining Eqn.(4) with Eqn.(6), we obtain

x(t2) = x(t1)− θz ỹuz(t1) + θyz(t1) + tx

⇒ st = −θz ỹu + θy +
tx

z(t1)
.

(7)

In Eqn.(7), for a given fixed ỹu and small motion δMw, the

only way the observed pixel shift st can change is due to the

depth of the point z(t1), which is scene-dependent. That is

why Bapat et al. [5] had to rely on more cameras to ob-

tain sufficiently many constraints. In contrast, our method

overcomes this inherent limitation by recognizing that, due

to the radial distortion, each distorted row spans a curve in

undistorted space. Hence, we can extract an independent

constraint from a piece-wise local linear segment in undis-

torted space as depicted in Fig. 2 providing us multiple in-

dependent constraints per radially distorted row. The addi-

tional cameras in the cluster provide even more constraints.

This is imperative for reducing the required number of cam-

eras in our system, as each camera in the cluster provides us

with multiple constraints at each point in time instead of

just one. Similar analysis can be done for nTcl not equal to

identity, which is the case for the rest of the cameras in the

cluster (see our supplementary material for details). The

linear independence of the constraints still persists as the

choice of coordinate system to express poses nTcl for the

cameras is arbitrary and the constraints are obtained from a

single row of each camera.

The stability of such an over-determined linear system

can be examined using the condition number [6]. We found

that the condition number of our linear system using a 4-

or 6-camera cluster is of the same order as that of the 10-

camera system of [5]. Note that the number of constraints

depends upon the extent of radial distortion present in the

image. Higher radial distortion would give more varying ỹu
locations for the sampled ỹd locations, making the system

more stable. We assume that significant radial distortion ex-

ists due to the lens in all of our experiments. Without radial

distortion, our linear system reduces to the case of Bapat et

al. [5]. Small distortion, in the range of one pixel, is also

not sufficient, as the constraints obtained from a single row

are similar to each other forming an ill-conditioned system.

3.2.2 Homography-based warp

We directly process the radially distorted rolling shutter

rows as soon as they become available. To achieve this, for

each incoming distorted row, we synthesize a reconstructed

row from the older frames for measuring shifts. This re-

constructed row is created by sampling from a global shut-

ter undistorted image frame FGS with absolute pose Tref .

This frame is synthesized from previous row images. To

create FGS , we split the rotational homography warp of

H = KRrefR
−1

rowK
−1, which maps each rolling shutter

row to the reference pose by creating two lookup tables: 1)

a lookup table to undistort previous frames and adjust their

rotation by application of R−1

rowK
−1, and 2) a similar table

for KRref . This helps us to avoid redundant computation

when the reference pose Tref changes. The reference pose

is chosen adaptively such that the motion between the ref-

erence and the current row is within a predefined threshold.

3.2.3 Robust shift estimation

As we directly compare distorted rows, small errors in the

pixel shift measurements can yield a result with significant

errors depending upon their corresponding depth and posi-

tion in the distorted space. To mitigate this, we use a robust

double exponential Holt-Winters smoothing filter to remove

outlier shift estimates [14]. For a time series mt, this filter

with trend Bt is defined as follows:

m̃t = αm*
t + (1− α)(m̃t−1 +Bt−1)

B̃t = β(m̃t − m̃t−1) + (1− β)Bt−1,
(8)

where α and β are filter parameters and “tilde” denotes the

filtered data. m*
t is a “cleaned” version of mt using Huber

loss Ψ to penalize large differences between noisy estimates

mt and one-step forecasts mt|t−1. The cleaned version m*
t

is

m*
t = Ψ

(
mt −mt|t−1

σ̂t

)
σ̂t +mt|t−1. (9)

The scale of this difference is estimated by a slowly varying

τ2-scale estimate σ̂t, which is highly robust to outliers. We

refer the reader to Gelper et al. [14] for more details.

3.3. Cluster configuration

The placement of the cameras in the cluster affects the

tracking estimates according to Eqn.(4). We use two cluster

configurations in our experiments: 1) a 4-camera configura-

tion, and 2) a 6-camera configuration. The even-numbered

cameras are rotated by 90◦ in the image plane and have

translations and small rotations in all three directions w.r.t

the odd-numbered cameras. See Fig. 1 for a visualization of

our 6-camera cluster. Although using a 2-camera cluster is

possible as the problem is well-posed, in our current cluster,

the first two cameras have principal axes mostly along the

Z direction (forward) creating an ill-conditioned linear sys-

tem. Thus measurements constraining the Z direction are

sensitive to noise and the accuracy is unsatisfactory.

The overlap between adjacent cameras can be decreased

to extend the overall field of view of the tracking system.

We estimate a depthmap per camera, and use the large over-

lap primarily to bootstrap the depth estimation in the exper-

iments. A possible reduction in overlap can be achieved if
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bootstrapping is done using stereo over multiple baselines

across time as in LSD-SLAM [12].

4. Experiments

We present experiments using synthetic and real world

imagery. For the synthetic experiments, we created a sim-

ulator using OpenGL and Qt, which is capable of simulat-

ing rolling shutter capture under radial distortion. For the

real data experiment, we used tracking information from a

2000Hz Hi-Ball tracking system [36] as ground truth. This

system is a low-latency wide-area tracking system operating

with absolute errors of less than 0.03◦ and 0.5mm.

The metric we use for evaluating our approach is the

rendering pixel error, that is, the error in the rendering of

the virtual scene caused by tracking errors as seen in a VR

headset, as proposed by Bapat et al. [5]. This is crucial for

AR/VR, as the rendering pixel errors directly affects user

experience. For this metric, we estimate the rendering pixel

error for a point 1m in front of the user for a resolution of

1080×1200 per eye, which is widely used by standalone

headgears like the HTC Vive, Oculus Rift and Razer OSVR

HDK2. We also present RMS errors of our tracking with

respect to the ground truth provided by the Hi-Ball. We

compare our results with Bapat et al. [5] using synthetic

imagery, as it is easy to capture images of the same room

along the same motion track using a simulator. We present

the tracking results of our approach and compare against the

rolling-shutter-aware SLAM method of Kim et al. [21] by

capturing real imagery using our custom cluster. Addition-

ally, we compare the performance of Microsoft’s HoloLens

with the Hi-Ball to provide a perspective on how our track-

ing errors compare against tracking with current commer-

cial AR systems, which work at much lower tracking fre-

quencies. Additional analysis is provided in the supplemen-

tary.

4.1. Synthetic data

We now present experiments using synthetic data, which

was captured with camera parameters designed to be similar

to real cameras. To compare directly with Bapat et al. [5],

all of the cluster cameras have the same vertical FoV of 60◦

as in [5] and the images were rendered at 120Hz frame

rate with a resolution of 480×640, making the tracking fre-

quency 57.6kHz. As our approach needs radial distortion,

we used distortion parameters k1 = −0.27 and k2 = 0.11 to

reflect real cameras. We used real human motion data cap-

tured using the Hi-Ball to render this synthetic imagery. As

the Hi-Ball tracking frequency does not match our tracking

frequency, we interpolated it to match our estimation fre-

quency of 57.6kHz. The room we used to simulate motion

was captured using a handheld Kinect [10].

The 6-camera case is accurate for real motions, (see Ta-

ble 1), while the 4-camera case shows more errors in track-

ing estimates, as it is inherently more sensitive to noise in

pixel shifts. The 20-camera system of [5] estimates pose

from a single point in a row, and hence is not robust. On

the other hand, we leverage multiple points in each row for

pose estimation and employ robust filters, leading to 2.55px

RMS error for 4-camera case.Fig. 4 shows the rendering

pixel error incurred across time for our 4- and 6-camera sys-

tems, and also the 20 camera cluster of [5]. The rendering

pixel errors for the 20-camera system deviate and start to

accumulate quickly, while our system shows gradual drift.

See our supplementary material for motion plots depicting

pose estimates across time.

4.2. Real data

For our experiments on real data, created a rig of six

RS cameras mounted on top of a hardhat. All the cameras

were GoPro Hero3+ silver edition and were kept at a nar-

row FoV, capturing at 720×1280 resolution at 120Hz. The

line delay for each camera was calibrated using the method

introduced by [28] using a checkerboard pattern. The over-

lap in the cameras helped us to calibrate adjacent cameras

in pairs using Zhang’s method [37]. All cameras were syn-

chronized in time using a blinking LED.

Now, we present experiments using captured data at

120Hz, amounting to 86.4kHz tracking frequency. We can

track orders of magnitude faster than the current commer-

cial trackers for a fraction of the cost. Our method sup-

ports high-frequency tracking using the 4-camera and 6-

camera cluster configurations. With the 6-camera setup, we

need less smoothing, as the linear system has more redun-

dant constraints; see Fig. 5, as compared to the 4-camera

setup, see Fig. 6. Fig. 7 shows the rendering pixel error

of our 4- and 6-camera setup against the RS aware SLAM

method of Kim et al. [21]. As Kim et al. [21] estimate a

pose per keyframe, we show the pixel error centered at each

frame. The rendering pixel errors incurred for our approach

are generally around 1 pixel and increase to 3 pixels as the

tracking drifts with some outlier spikes in errors. On the

other hand, the RS-aware SLAM system shows stronger de-

viation up to 5 pixels.

Compared to [5], we were able to track for much longer,

estimating poses for more than twice the row-samples while

still maintaining accuracy. If we compare similar track

length tracking estimates as in [5], we incurred only 1 pixel

error for real imagery. Table 1 shows the RMS error for

translation, rotation, and rendering pixel error. For real

imagery, the 4-camera case and 6-camera cases perform

equally well, incurring 0.68px and 0.75px rendering error,

respectively.

4.3. Comparison with HoloLens

We evaluate how our tracking errors compare to tradi-

tional systems like Microsoft’s HoloLens for small-scale
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ERMS Tx (cm) Ty (cm) Tz (cm) θx (degree) θy (degree) θz (degree) Rendering error (px)

4-camera real data 0.0648 0.0974 0.1064 0.0541 0.0776 0.0720 0.6804

6-camera real data 0.1783 0.0890 0.1139 0.0326 0.0499 0.0959 0.7507

HoloLens Fig.(8) 0.21 0.04 0.05 0.05 0.03 0.02 0.8249

4-camera synthetic data 0.43 0.18 0.23 0.14 0.23 0.06 2.55

6-camera synthetic data 0.38 0.27 0.22 0.13 0.22 0.08 2.39

20 camera system from [5] 0.67 0.83 1.34 0.21 0.47 0.29 4.63

Table 1: RMS errors for tracking estimates using real imagery for our 4-camera rig, 6-camera rig, and HoloLens pose

estimates compared against the ground-truth Hi-Ball tracking. For comparison with [5], we show RMS error computed for

the same synthetic scene for our 4 and 6-camera cases, and the 20 camera (10 stereo-pairs) case from [5]. The system of [5]

incurs more errors, as it relies on only a single point per row for pose estimation.

Figure 3: With higher radial distortion, the system stabil-

ity increases (smaller condition number). Additional views

increase stability (4- vs. 6-cameras). The plot shows the

worst-case condition number (PinholeCam 4-camera result

too large to show).

motion. It is impractical to wear the HoloLens, Hi-Ball and

our camera cluster simultaneously, but we can attach the

Hi-Ball to either HoloLens or our cluster. Hence, we com-

pare the HoloLens with the Hi-Ball and our cluster with the

Hi-Ball to provide an indirect comparison. Using the front

color camera of the HoloLens, we perform hand-eye cali-

bration using Tsai and Lenz’s method [35] to register the

HoloLens tracking data with the Hi-Ball. Fig. 8 shows the

HoloLens tracking against the Hi-Ball tracking and demon-

strates that the HoloLens suffers from translational drift but

remains accurate in rotation. The motion range in this plot

is similar to the scale of motion in our experiment with

real imagery. The HoloLens is particularly good at tracking

large translations, and at correcting for drift and incorrect

translation estimates, due to its SLAM system. Fig. 8 high-

lights that the dominant motion in the Y-direction is tracked

well by the HoloLens, but the rest of the motion axes have

significant errors. Table 1 shows the RMS errors for the

HoloLens tracking. HoloLens incurs 0.82 rendering pixel

RMS error; on the other hand, for a similar scale of motion,

our tracking system incurs 0.68px for our 4-camera cluster.

Our approach thus achieves high accuracy in tracking 6 DoF

poses, just using commodity rolling shutter cameras.

4.4. System conditioning and extent of distortion

System conditioning depends upon the amount of ra-

dial distortion present in the image. We rendered synthetic

images for real, widely used cameras like the Pi OV5647

(k1 = -0.31, k2 = 0.083), GoPro 4 (-0.27, 0.11), and Zed

(-0.17, 0.023). We also rendered images for simulated cam-

eras: SCam1 (0.15, 0.05), SCam2 (0.05, 0.05), and Pinhole-

Cam (0, 0). For each of these camera types, we generated

synthetic images for our 4- and 6-camera configurations ac-

cording to the motion patterns in supplementary Sec. 3.

We computed the worst-case condition number across all

time points and compared this across cameras (Fig. 3). The

condition number decreases with higher distortion due to

the availability of more constraints per row, and it also de-

creases when more cameras are present. Average condition

numbers (not shown) are substantially lower.

5. Conclusion

We have introduced a simple and flexible high frequency
head-pose tracking system that explicitly leverages rolling
shutter exposure and radial distortion without using any ex-
ternal markers. Our method achieves tracking frame rates
that are orders of magnitude larger than current commercial
systems like NDI’s Optotrak Certus [27] for a fraction of
the cost. In order to achieve this, we process every row of a
rolling shutter image to estimate a pose per-row. This high-
frequency sampling of rows enables us to assume linear mo-
tion. By splitting a radially distorted rolling shutter row
into multiple locally linear line segments, we extract mul-
tiple linear constraints on 6-DoF head motion and accord-
ingly require only requiring 4-6 cameras for stable 86.4 kHz
tracking. Through rigorous experiments, we show the via-
bility of our approach using synthetic data and validate us-
ing real imagery captured using our prototype camera clus-
ter headgear. Moreover, our approach allows more flexibil-
ity in designing the cluster and simplifies the physical align-
ment constraints on the system. Most importantly, we have
introduced the first approach to leverage both rolling shutter
and radial distortion to improve high-frequency tracking.
Acknowledgments This research was partially supported
by NSF grant No. CNS-1405847.
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Figure 4: For the same camera motion, our tracking incurs far smaller rendering pixel errors using only 4 cameras as opposed

to the 20-camera system of [5] for synthetic data.

(a) (b)

Figure 5: Tracking estimates of the 6-camera configuration using real imagery and Hi-Ball tracking data for ground truth: (a)

Rotation estimates in degrees and (b) translation estimates in cm. Note that the scale of the y-axis is different for each figure.

(a) (b)

Figure 6: Tracking estimates of the 4-camera configuration using real imagery and Hi-Ball tracking data for ground truth: (a)

Rotation estimates in degrees and (b) translation estimates in cm. Note that the scale of the y-axis is different for each figure.

Figure 7: Render pixel estimates: Our 4-camera configuration (black) has higher error than our 6-camera configuration

(green). Blue dots show the rendering error obtained by the method of Kim et al. [21], which maintains a pose estimate per

keyframe, rather than per row.

(a) (b)

Figure 8: Tracking estimates of the HoloLens compared with the Hi-Ball. Note that the vertical axes are not the same across

plots. The horizontal axis is expressed in terms of row-samples, instead of time, for easier comparison.

84831



References

[1] O. Ait-Aider, N. Andreff, J.-M. Lavest, and P. Martinet. Ex-

ploiting rolling shutter distortions for simultaneous object

pose and velocity computation using a single view. In Com-

puter Vision Systems, 2006 ICVS’06. IEEE International

Conference on, pages 35–35. IEEE, 2006.

[2] O. Ait-Aider, A. Bartoli, and N. Andreff. Kinematics from

lines in a single rolling shutter image. In Computer Vision

and Pattern Recognition, 2007. CVPR’07. IEEE Conference

on, pages 1–6. IEEE, 2007.

[3] C. Albl, Z. Kukelova, and T. Pajdla. R6p-rolling shutter ab-

solute camera pose. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2292–

2300, 2015.

[4] C. Albl, A. Sugimoto, and T. Pajdla. Degeneracies in rolling

shutter sfm. In European Conference on Computer Vision,

pages 36–51. Springer, 2016.

[5] A. Bapat, E. Dunn, and J.-M. Frahm. Towards kilo-hertz

6-dof visual tracking using an egocentric cluster of rolling

shutter cameras. IEEE Transactions on Visualization and

Computer Graphics, 22(11):2358–2367, 2016.

[6] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression diag-

nostics: Identifying influential data and sources of collinear-

ity, volume 571. John Wiley & Sons, 2005.

[7] D. Bradley, B. Atcheson, I. Ihrke, and W. Heidrich. Syn-

chronization and rolling shutter compensation for consumer

video camera arrays. In Computer Vision and Pattern Recog-

nition Workshops, 2009. CVPR Workshops 2009. IEEE Com-

puter Society Conference on, pages 1–8. IEEE, 2009.

[8] D. C. Brown. Decentering distortion of lenses. Photometric

Engineering, 32(3):444–462, 1966.

[9] Y. Dai, H. Li, and L. Kneip. Rolling shutter camera relative

pose: Generalized epipolar geometry. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[10] M. Dou, L. Guan, J.-M. Frahm, and H. Fuchs. Exploring

high-level plane primitives for indoor 3d reconstruction with

a hand-held rgb-d camera. In Asian Conference on Computer

Vision, pages 94–108. Springer, 2012.
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